CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand.
نویسندگان
چکیده
The catalytic cycle for the production of formic acid by CO2 hydrogenation and the reverse reaction have received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO2 hydrogenation catalyzed by iridium complexes bearing sophisticated N^N-bidentate ligands is reported. We describe how a ligand containing hydroxy groups as proton-responsive substituents enhances the catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interactions. In particular, [(Cp*IrCl)2(TH2BPM)]Cl2 (Cp* = pentamethylcyclopentadienyl; TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) enormously promotes the catalytic hydrogenation of CO2 in basic water by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands were applied to CO2 hydrogenation. The catalytic efficiencies of the azole-type complexes were much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH2)]SO4. Furthermore, the introduction of one or more hydroxy groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxypyrimidine, and 4-pyrazolyl-2,6-dihydroxypyrimidine enhanced the catalytic activity. It is clear that the incorporation of additional electron-donating functionalities into proton-responsive azole-type ligands is effective for promoting further enhanced hydrogenation of CO2.
منابع مشابه
Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine–diphosphine ligands† †Electronic supplementary information (ESI) available: Experimental procedures; spectral data for all new compounds. See DOI: 10.1039/c5sc00248f Click here for additional data file. Click here for additional data file.
Carbon dioxide (CO2), an economical, safe, environmentally friendly, and renewable carbon source, is an ideal one-carbon building block for organic chemicals, including carbohydrates and fuels. However, its thermodynamic and kinetic stability presents a fundamental obstacle to the use of CO2 in both academia and industry. High-energy reagents, harsh reaction conditions, and special activation m...
متن کاملHighly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine-diphosphine ligands.
A new iridium catalyst containing an imine-diphosphine ligand has been developed, which showed high efficiency for the hydrogenation of CO2 to formate (yield up to 99%, TON up to 450 000). A possible catalytic mechanism is proposed, in which the imine group of the catalyst plays a key role in the cleavage of H2 and the activation of CO2.
متن کاملAsymmetric hydrogenation of quinolines catalyzed by iridium complexes of BINOL-derived diphosphonites.
A chiral diphosphonite, derived from BINOL and with an achiral diphenyl ether backbone, is an excellent ligand for the Ir-catalyzed asymmetric hydrogenation of quinolines; achiral P-ligands serving as possible additives (ee = 73-96%).
متن کاملAsymmetric Hydrogenation of Quinolines Catalyzed by Iridium Complexes of Monodentate BINOL-Derived Phosphoramidites
The monodentate BINOL-derived phosphoramidite PipPhos is used as ligand for the iridium-catalyzed asymmetric hydrogenation of 2and 2,6-substituted quinolines. If tri-ortho-tolylphosphine and/or chloride salts are used as additives enantioselectivities are strongly enhanced up to 89%. NMR indicates that no mixed complexes are formed upon addition of tri-ortho-tolylphosphine.
متن کاملIridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal
Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 54 11 شماره
صفحات -
تاریخ انتشار 2015